|
jAER project on SourceForge | |||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |
java.lang.Objectnet.sf.jaer.util.Matrix
public class Matrix
// Matrix.java // solve, invert, etc. last argument is output // void solve(float A[][], float Y[], float X[]); X=A^-1*Y // void invert(float A[][]); A=A^-1 // float determinant(float A[]); d=det A // void eigenvalues(float A[][], float V[][], float Y[]); V,Y=eigen A // void checkeigen(float A[][], V[][], float Y[]); printout // void multiply(float A[][], float B[][], float C[][]); C=A*B // void add(float A[][], float B[][], float C[][]); C=A+B // void subtract(float C[][], float A[][], float B[][]); C=A-B // float norm1(float A[][]); d=norm1 A // float norm2(float A[][]); sqrt largest eigenvalue A^T*A d=norm2 A // float normFro(float A[][]); Frobenius d=normFro A // float normInf(float A[][]); d=normInf A // void identity(float A[][]); A=I // void zero(float A[][]); A=0 // void copy(float A[][], floatB[][]); B=A // void boolean equals(float A[][], floatB[][]); B==A // void print(float A[][]); A // void multiply(float A[][], float X[], float Y[]); Y=A*X // void add(float X[], float Y[], float Z[]); Z=X+Y // void subtract(float X[], float Y[], float Z[]); Z=X-Y // float norm1(float X[]); d=norm1 X // float norm2(float X[]); d=norm2 X // float normInf(float X[]); d=normInf X // void unitVector(float X[], int i); X[i]=1 else 0 // void zero(float X[]); X=0 // void copy(float X[], float Y[]); Y=X // void boolean equals(float X[], floatY[]); X==Y // void print(float X[]); X
Constructor Summary | |
---|---|
Matrix()
|
Method Summary | |
---|---|
static void |
add(float[][] A,
float[][] B,
float[][] C)
|
static void |
add(float[] X,
float[] Y,
float[] Z)
|
static float[][] |
addMatrix(float[][] a,
float[][] b)
|
static void |
copy(float[][] A,
float[][] B)
|
static void |
copy(float[] X,
float[] Y)
|
static float |
determinant(float[][] A)
|
static void |
eigenCheck(float[][] A,
float[][] V,
float[] Y)
// check A * X = lambda X lambda=Y[i] X=V[i] |
static void |
eigenvalues(float[][] A,
float[][] V,
float[] Y)
// cyclic Jacobi iterative method of finding eigenvalues // advertized for symmetric real |
static boolean |
equals(float[][] A,
float[][] B)
|
static boolean |
equals(float[] X,
float[] Y)
|
static void |
identity(float[][] A)
|
static void |
invert(float[][] A)
|
static void |
multiply(float[][] A,
float[][] B,
float[][] C)
|
static void |
multiply(float[][] A,
float[] B,
float[] C)
|
static float[][] |
multMatrix(float[][] a,
float s)
|
static float[] |
multMatrix(float[][] a,
float[] x)
|
static float[][] |
multMatrix(float[][] a,
float[][] b)
|
static float |
norm1(float[] X)
|
static float |
norm1(float[][] A)
|
static float |
norm2(float[] X)
|
static float |
norm2(float[][] A)
|
static float |
normFro(float[][] A)
|
static float |
normInf(float[] X)
|
static float |
normInf(float[][] A)
|
static void |
print(float[] X)
|
static void |
print(float[][] A)
|
static void |
solve(float[][] A,
float[] Y,
float[] X)
// solve real linear equations for X where Y = A * X // method: Gauss-Jordan elimination using maximum pivot // usage: Matrix.solve(A,Y,X); // Translated to java by : Jon Squire , 26 March 2003 // First written by Jon Squire December 1959 for IBM 650, translated to // other languages e.g. |
static void |
subtract(float[][] A,
float[][] B,
float[][] C)
|
static void |
subtract(float[] X,
float[] Y,
float[] Z)
|
static float[][] |
transposeMatrix(float[][] a)
|
static void |
unitVector(float[] X,
int j)
|
static void |
zero(float[] X)
|
static void |
zero(float[][] A)
|
Methods inherited from class java.lang.Object |
---|
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
Constructor Detail |
---|
public Matrix()
Method Detail |
---|
public static void solve(float[][] A, float[] Y, float[] X)
A
- Y
- X
- public static final void invert(float[][] A)
public static final float determinant(float[][] A)
public static final void eigenvalues(float[][] A, float[][] V, float[] Y)
A
- the matrixV
- eigenvectorsY
- the vector of eigenvaluespublic static final void eigenCheck(float[][] A, float[][] V, float[] Y)
A
- V
- Y
- public static final void multiply(float[][] A, float[][] B, float[][] C)
public static final void add(float[][] A, float[][] B, float[][] C)
public static final float[][] addMatrix(float[][] a, float[][] b)
public static final void subtract(float[][] A, float[][] B, float[][] C)
public static final float norm1(float[][] A)
public static final float normInf(float[][] A)
public static final void identity(float[][] A)
public static final void zero(float[][] A)
public static final float normFro(float[][] A)
public static final float norm2(float[][] A)
public static final void copy(float[][] A, float[][] B)
public static final boolean equals(float[][] A, float[][] B)
public static final void print(float[][] A)
public static final void multiply(float[][] A, float[] B, float[] C)
public static final float[][] multMatrix(float[][] a, float s)
public static final float[][] multMatrix(float[][] a, float[][] b)
public static final float[] multMatrix(float[][] a, float[] x)
public static final void add(float[] X, float[] Y, float[] Z)
public static final void subtract(float[] X, float[] Y, float[] Z)
public static final float[][] transposeMatrix(float[][] a)
public static final float norm1(float[] X)
public static final float norm2(float[] X)
public static final float normInf(float[] X)
public static final void unitVector(float[] X, int j)
public static final void zero(float[] X)
public static final void copy(float[] X, float[] Y)
public static final boolean equals(float[] X, float[] Y)
public static final void print(float[] X)
|
jAER project on SourceForge | |||||||||
PREV CLASS NEXT CLASS | FRAMES NO FRAMES | |||||||||
SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD |